
Macintosh Technical Notes

Macintosh
Technical Notes

Developer Technical Support
#294: Me And My pIdle Proc (or how to let users know what’s going

on during print time…)

Written by: Pete “Luke” Alexander April
1991

This Technical Note discusses how to defensively program a pIdle
procedure to work with the majority of print drivers in existence today,
and how to install it at print time.

Introduction

When using a pIdle procedure at print time, there are a few things that one should remember to
be compatible with the printer drivers that are available today. This Technical Note discusses
installing a pIdle procedure at the right time and the things to remember when writing one.

Installing The pIdle Proc

Let's start by installing the pIdle procedure at the right time. You must install your pIdle
procedure into the print record before calling PrOpenDoc. If you do not install your pIdle
procedure before your call to PrOpenDoc, the printer driver does not give the application's
pIdle procedure any time. The following code fragments demonstrate installing the pIdle
procedure in the right place:

MPW Pascal
 << more print loop would appear above, see Tech Note #161 for details >>
 {** Install a pointer to your pIdle proc into your print record. **}

 PrintingStatusDialog := GetNewDialog(257, NIL, POINTER(-1));
 thePrRecHdl^^.prJob.pIdleProc := @checkMyPrintDialogButton;

 thePrPort := PrOpenDoc(thePrRecHdl, NIL, NIL);

 << more print loop would follow below, see Tech Note #161 for details >>

Developer Technical Support April 1991

Macintosh Technical Notes

MPW C
 << more print loop would appear above, see Tech Note #161 for details >>
 /** Install a pointer to your pIdle proc into your print record. **/

 PrintingStatusDialog = GetNewDialog(257, nil, (WindowPtr) -1);
 (**thePrRecHdl).prJob.pIdleProc = checkMyPrintDialogButton;

 thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);

 << more print loop would follow below, see Tech Note #161 for details >>

Developer Technical Support April 1991

Macintosh Technical Notes

For a complete printing loop that handles errors at print time and makes all of the right calls to the Printing Manager, refer to Technical Note #161, A
Print Loop That Cares...

Things To Remember About pIdle Procedures

It is extremely important to design and code your pIdle procedure as defensively as possible,
thereby making sure that it works with as many printer drivers as possible. This section details
a few things to remember when creating pIdle procedures.

Saving And Restoring The Current Port

It is extremely important to save the printer driver’s GrafPort, upon entry to your pIdle
procedure and restore it upon exit. Why? If you do not, the printer driver would draw into the
GrafPort of your dialog box instead of it's GrafPort,which will cause some bad results.
To save the printer’s GrafPort, you should call _GetPort when entering your procedure.
Before you exit your procedure, you would call _SetPort to set the port from your dialog box
back to the printer driver’s GrafPort (i.e., the one you saved with _GetPort).

Saving And Restoring The Printer Driver’s Resources

If the application changes the resource chain within it's pIdle procedure, you want to save and
restore the printer driver’s resource chain. Why? Some printer drivers assume that their
resource chain does not change, but this may not be true when the driver calls the pIdle
procedure installed by the application at print time. To accomplish this task, call
_CurResFile, saving the ID of the printer driver’s resource file at the beginning of your
pIdle procedure. When you exit from your pIdle procedure, restore the resource chain back to
the printer driver’s resource chain with a call to _UseResFile.

At this point, you might be wondering what might change the resource chain. If you called
_OpenResFile or _UseResFile (anything that would change the value of the low memory
global TopMapHdl) within the application's pIdle procedure, the chain would be changed. If
you are not changing the resource chain, these calls would not be needed.

Handling Errors From Within A pIdle Procedure

You should avoid calling PrError within your pIdle procedure; errors that occur while it is
executing are usually temporary, and serve only as internal flags for communication within the
printer driver—they are not intended for the application. If you absolutely must call PrError
within your idle procedure, and an error occurs, never abort printing within the idle procedure
itself. Wait until the last called printing procedure returns, then check to see if the error still
remains. Attempting to abort printing within an idle procedure is a guarantee of certain death.

Developer Technical Support April 1991

Macintosh Technical Notes

Canceling Or Pausing The Printing Process

If you install a procedure for handling requests to cancel printing, with an option to pause the
printing process, beware of timeout problems when printing to the LaserWriter.
Communication between the Macintosh and the LaserWriter must be maintained to prevent a
job or a wait timeout. If there is not any communication for a period of time (over two
minutes), the printer times out and the print job terminates due to a wait timeout. Or, if the
print job requires more than three minutes to print, the print job terminates due to a job timeout.
Since, there is not a good method to determine to what type of printer an application is printing,
it is probably a good idea to document the possibility of a LaserWriter timing out for a user who
chooses to select “pause” for over two minutes.

Developer Technical Support April 1991

Macintosh Technical Notes

Some Printer Drivers Do Not Support pIdle Procedures

Some printer drivers do not support pIdle procedures, as they prefer to handle the pIdle
procedure in their own manner without giving an application’s pIdle procedure any time. This
situation should not be a problem as long as you do not assume that your pIdle procedure is
always called at print time. Therefore, you should only create your pIdle procedure to display
the dialog box and respond to a user pausing, continuing, or canceling a print job.

Conclusion

When installing your pIdle proc, it must be installed before the application calls PrOpenDoc.
You want to make sure that you save and restore the GrafPort , upon entry and exit of your pIdle
procedure, to make sure that the printer driver will image into the correct port during the print
job. Finally, if you are changing the resource chain by calling _OpenResFile or _UseResFIle,
you want to make sure that you save and restore the resource chain.

Further Reference:
• Inside Macintosh, Volume II, The Printing Manager
• Technical Note #161, A Print Loop That Cares...

Developer Technical Support April 1991

